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Abstract. The hyperfine splitting of the ground state of terbium in a single crystal of TbNi5 has
been studied using159Tb spin-echoNMR at 1.3 K and in fields up to 8 T. The measurements are
in perfect agreement with computations including corrections for the effect ofJ -mixing. From
the field dependence of the quadrupolar splitting we have derived the electric field gradient at
the terbium nucleus:V ′′

cc = (9.77± 0.2) × 1021 V m−2 and the ratio of antishielding factors:
γN/γE = 174± 6. The value obtained forγN/γE is significantly different from that measured
for the insulating compound Tb(OH)3. The contributions of the spin- and orbitally polarized
conduction electrons to the total hyperfine field:Bce = 3.17 T andBorb = 0.63 T are obtained
from the field dependence of the dipolar splitting.

1. Introduction

The intermetallic compounds containing 4f and 3d transition elements can be divided into
two categories, those in which the 3d element has a permanent magnetic moment and those
in which the 3d element behaves as a Pauli paramagnet. There are however a number of
compounds, of which the RNi5 series is a typical example, where the behaviour of the 3d
moment is strongly influenced by the environment.

In the RNi5 the 3d electrons in the conduction band can be polarized by an applied field
and by the 4f moments when the rare earth is magnetic. The resulting induced magnetization
is then enhanced by exchange with the surrounding spins. The compounds LaNi5 and YNi5,
in which the rare earth is non-magnetic, are strongly exchange-enhanced Pauli paramagnets;
the magnetic susceptibility per formula unit at 4.2 K is of the order of 40× 10−4 µB T−1,
about five times that of metallic nickel (Gignouxet al 1976). Apart from PrNi5 which
displays Van Vleck paramagnet behaviour down to the lowest temperatures, all of the
compounds with a magnetic rare earth order ferromagnetically at low temperatures. The
gadolinium compound has the highest ordering temperature in the series (32 K).

The RNi5 series has been extensively studied: see for example the review by Franse and
Radwanski (1993) and the references therein. All of the compounds in the series crystallize
in the simple hexagonal CaCu5 structure (space groupP 6/mmm). There is one rare-earth
site per unit cell with symmetry D6h (Wernick and Geller 1959). In spite of the continuing
research activity (Kim-Nganet al 1995, Novak and Kuriplach 1994, Herrmannsdorferet
al 1994, Zhanget al 1994, Radwanskiet al 1992), there have been only few hyperfine
studies on the series. The hyperfine splitting of the lanthanide ion in GdNi5, ErNi5, DyNi5
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and TmNi5 has been studied by M̈ossbauer spectroscopy by Nowik and Wernick (1965),
van Steenwijket al (1977) and Gubbenset al (1985, 1989). Besides our recent159Tb NMR

measurements of the hyperfine splitting in TbNi5 (Carboniet al 1995), the onlyNMR study
in the RNi5 that we are aware of is the early work by Kaplan and co-workers on141Pr in
PrNi5 (Levin et al 1979, Kaplanet al 1980).

The present paper is a detailed159Tb NMR study of the field dependence of the hyperfine
splitting of Tb3+ in a single crystal of TbNi5. A summary of the magnetic properties of
TbNi5 is given in appendix A. TbNi5 orders at 23 K with the spontaneous magnetization
along thea axis of the hexagonal structure. The magnetic properties are highly anisotropic,
the basal plane being the much preferred orientation for the magnetization. Within the basal
plane, the anisotropy is small (Gignouxet al 1979).

2. Theory

The interpretation of ourNMR data is based on the conventional approach where it is assumed
that the interactions experienced by the rare-earth ion in the solid are small perturbations
on the free-ion states. To first order, the magnetic behaviour of the ion in the compound is
described by an effective Hamiltonian representing only the lowestJ -manifold. However,
the small admixture of theJ -manifolds by the crystal field (J -mixing) may have a significant
effect on the hyperfine splitting. Details of the theory for the hyperfine interaction including
J -mixing will be given in a different publication. In the present work the effect ofJ -mixing
on the hyperfine splitting is included in the computation of the dipolar hyperfine parameter
by a correction term (Bunburyet al 1995).

The theory for the hyperfine interaction of rare-earth ions in solids is described in
detail by McCausland and Mackenzie (1979). See also Dormann (1991) and Bunburyet
al (1989, 1995). In sections 2.2 and 2.3 below, we review the main points of the theory
which are relevant to the present work. Following McCausland and Mackenzie (1979)
we shall use the crystallographic axes (a, b, c) as the reference frame for the electronic
Hamiltonian and a Cartesian coordinate system (x, y, z) with the z axis anti-parallel to
the rare-earth moment for the nuclear Hamiltonian. Thec axis is the quantization axis for
the electronic Hamiltonian. In the next section, we give an outline of the theory for the
exchange interaction in the RNi5 compounds. Our approach follows that of Barthemet al
(1988).

2.1. The exchange interaction

The exchange interaction in the RNi5 compounds is formally described by three molecular-
field coefficients: nNiNi , nRNi and nRR representing, respectively, the nickel–nickel, the
nickel–rare-earth and the rare-earth–rare-earth interactions. The molecular-field coefficients
are defined by the following expressions for the magnetization of the nickel and the rare-
earth sublattices in the paramagnetic phase:

MNi = χ0
Ni(Hi + nNiNiMNi + nRNiMR) (1)

MR = χRHtot = χR(Hi + nRRMR + nRNiMNi). (2)

Htot is the total field acting on the rare-earth ion;Hi , the internal field at the site of interest,
is the applied field corrected for demagnetizing effects.χ0

Ni is the intrinsic susceptibility of
nickel—that is, the susceptibility in the absence of any exchange interaction.
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It is convenient to define the exchange-enhanced susceptibility for nickel as

χNi = χ0
Ni

1 − nNiNiχ
0
Ni

(3)

and to rewrite equation (1) as

MNi = χNi(Hi + nRNiMR). (4)

Inserting equation (4) into equation (2) one obtains the total field at the lanthanide site:

Htot = (1 + α)Hi + nMR (5)

whereα = χNinRNi, n = nRR + αnRNi .
In the microscopic single-ion approach which we follow in the remainder of the paper

we write the total field in the form

Btot = µ0Htot = (1 + α)µ0Hi + nµ (6)

where the units forn are teslas per Bohr magneton;µ = gJ µB〈J〉 is the localized rare-earth
moment;gJ and 〈J〉 are respectively the Landé g-factor and the thermal average of the
total electronic angular momentum of the rare earth. This change of units is desirable in
order to be consistent with the notation of McCausland and Mackenzie (1979).

2.2. The electronic Hamiltonian

The splitting of the ground manifold of the rare-earth ion is described by the effective
electronic Hamiltonian

Hel = Hcf + Hz (7)

whereHcf is the crystal-field interaction and

Hz = −Btot ·µ (8)

represents, in the molecular-field approximation, the effective Zeeman interaction of the
ionic momentµ with the total fieldBtot at the lanthanide site. The relation between the
applied and the total fields is given by equation (6). In the notation of Abragam and Bleaney
(1969) the crystal-field interaction at a site with D6h symmetry is

Hcf = B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B6
6O6

6. (9)

The electronic HamiltonianHel is therefore characterized by six parameters: the four crystal-
field parameters,α andn. Numerical values of the parameters for Tb3+ in TbNi5 are given
in table 1.

Table 1. The crystal-field parametersBm
n in kelvin, the dimensionless enhancement factorα

and the exchange coefficientn in T µ−1
B for Tb3+ in TbNi5. The crystal-field parameters are

weighted means of the parameters obtained by several authors (see Carboniet al 1995). α and
n are from Nait-Saada (1980).

B0
2 B0

4 B0
6 B6

6 α n

3.84 −0.15×10−2 −0.19×10−4 −4.78×10−4 −0.06 0.81

In figure 1 we show, as a function ofBtot = |Btot | with Btot parallel to thea axis,
the behaviour of the five lowest levels ofHel . The data in the figure were obtained by
diagonalizingHel for various values ofBtot using the set of crystal-field parameters given
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in table 1. In table 2 we give the ground and first excited state ofHel at Btot = 0 and
Btot = 6.34 T, and the magnitude of the molecular field in TbNi5 at 1.3 K (see section 3
below). In zero total field, the ground state is a01 singlet and is almost pure|MJ = 0〉;
the first excited state at 5.8 K is a06 doublet and is almost pure|MJ = ±1〉.

Table 2. The ground and first excited states of Tb3+ in the crystal field of TbNi5. The first line
gives the states in the absence of any field and the second the states in the molecular field of
TbNi5 in the ordered phase.

Btot (T) |E0〉 |E1〉
0 0.0129(|6〉 + |−6〉) + 0.9998|0〉 −0.0333|±5〉 − 0.9994|±1〉

6.34 0.009|±6〉 + 0.015|±5〉 + 0.011|±4〉 ±0.006|±6〉 ± 0.021|±5〉 ± 0.019|±4〉
+0.025|±3〉 + 0.142|±2〉 + 0.471|±1〉 +0.048|±3〉 + 0.316|±2〉 + 0.630|±1〉
+0.014|0〉 +0.0|0〉

Figure 1. The five lowest electronic energy levels of the terbium ion in the crystal field of
TbNi5 as a function of the total field parallel to thea axis. The vertical broken line represents
the molecular field in the ordered phase of TbNi5 in zero applied field.
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2.3. The hyperfine splitting

The hyperfine splitting of the electronic ground state is described, to second order, by the
effective nuclear Hamiltonian

HN = h

[
atIz + Pt

(
I 2
z − 1

3
I2

)
+ wI 3

z

]
(10)

where I is the nuclear spin operator. The parametersat , Pt and w are respectively the
dipolar, quadrupolar and pseudo-octupolar parameters.

The intra-ionic contributionsa′ and P ′ to the dipolar and quadrupolar parameters are
given by

a′ = a0
〈Jz〉
J

+ second-order term (11a)

P ′ = P0
〈3J 2

z − J2〉
J (2J − 1)

+ second-order term. (11b)

The free-ion hyperfine coupling constantsa0 andP0, together with other relevant constants
pertaining to the Tb3+ ion and the159Tb nucleus, are given in appendix A. Explicit
expressions for the second-order terms can be found in Bunburyet al (1989). The term in
I 3
z in HN arises not from the octupolar moment of the nucleus, which is negligible, but

from cross-terms between the dipolar and quadrupolar terms in second-order perturbation
theory. w is therefore wholly intra-ionic.

Whereasa′, P ′ andw can be calculateda priori using the relevant expectation values
for the ground state ofHel , the calculation ofa′′ and P ′′, the extra-ionic contributions to
at and Pt , is not in general straightforward. However, in the present case the extra-ionic
contributions are at least one order of magnitude smaller than the intra-ionic ones so some
simplifying approximations may be made without any significant loss of accuracy.

The extra-ionic hyperfine field at the lanthanide’s nucleus is written as

B′′ = Ba + Bdip + Bce + Borb (12)

whereBdip andBa are respectively the dipolar field and the applied field.Bce andBorb

respectively denote the contributions of spin- and orbitally polarized conduction electrons.
In the present context we may assume thatBce andBorb are collinear with〈J〉 and write

Bce + Borb = −κ〈Jz〉 (13)

whereκ is a phenomenological constant (κ = (Kp + Kn)(gJ − 1) + (2 − gJ )Korb in the
notation of McCausland and Mackenzie (1979)).

The dipolar fieldBdip is the sum of the demagnetizing fieldBdm, the field from the
dipoles within the Lorentz sphere and the Lorentz fieldBL = (µ0µBgJ /3v0)〈J〉 wherev0

is the volume per rare-earth ion. We assume thatBdip is collinear to the rare-earth moment
and write

Bdip = Bdm + κdip〈Jz〉. (14)

When, as in the present case, the external field is also collinear with the rare-earth moment,
the extra-ionic contribution to the dipolar hyperfine splitting is

a′′ = γ

2π
B ′′ = γ

2π

[
Ba + Bdm + (κdip − κ)〈Jz〉

]
. (15)

At a site of axial symmetry,P ′′, the extra-ionic contribution to the quadrupole parameter,
is given by

hP ′′ = 3eQn

4I (2I − 1)

[
1

2
(3 cos2 θ − 1)V ′′

cc

]
(16)
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whereV ′′
cc is the axial component of the extra-ionic electric field gradient tensor seen by

the nucleus andθ is the angle between the ionic moment and the axis of the electric field
gradient tensor.Qn is the nuclear quadrupole moment.

It is customary to relateV ′′
cc and the second-order (quadrupolar) crystal-field parameter

B0
2 to the bare lattice electric field gradientVcc via the proportionality relations

V ′′
cc = γNVcc (17)

and

B0
2 = − e

4
〈J‖α2‖J 〉〈r2〉γEVcc (18)

where γN and γE are respectively the nuclear and the electronic antishielding factors
(γE = 1 − σ andγN = 1 − γ∞ in the notation of Blok and Shirley 1966) and〈J‖α2‖J 〉 is
the second-order operator-equivalent coefficient. One can then write equation (15) as

P ′′ = − 3Qn

hI (2I − 1)〈J‖α2‖J 〉〈r2〉
γN

γE

[
1

2
(3 cos2 θ − 1)

]
B0

2. (19)

However, recent band-structure calculations by Coehoorn and Buschow (1991) have shown
that in metallic compounds the contribution toB0

2 from the valence-electron charge density
may dominate that from the lattice charges. Under such circumstances, the ratioγN/γE

becomes host dependent and the physical meaning of the antishielding factors is not at
all obvious. The factorsγN and γE may still be defined formally by equations (17) and
(18) but, because of the host dependence of the ratioγN/γE , there is no simple general
proportionality relation betweenP ′′ andB0

2. In the present work we shall treatP ′′ as a free
parameter which is independent of the applied field.

3. Computation

The computation of the hyperfine parameters as a function of the applied field is carried out
as follows. For each value of the applied field a first estimate of the total field (equation
(6)) is obtained by assuming that the terbium ion is fully polarized.Hel is then diagonalized
and a new value for〈Jz〉 and hence for the total field is found. The calculation is iterated
until self-consistency is achieved. Finally, the intra-ionic contributions to the hyperfine
parameters and the extra-ionic contributiona′′ are computed using the ground state of the
self-consistent electronic Hamiltonian. In zero applied field, the value thus obtained for
Btot is 6.34 T in agreement with the magnetization measurements of Nait-Saada (1980).
Numerical values of the various contributions to the internal fieldBi are given in table 3.
The demagnetizing field was estimated by approximating the specimen to a cylinder of the
same cross-section and length. The contribution to the dipolar field from the dipoles within
the Lorentz sphere was calculated using the lattice parameters of Haszko (1960). The dipole
sum converges (better than 10−8 T) within a sphere of radius 81 nm containing 27× 106

ions. The parameterκ was obtained from a fit to the experimental data. In table 4 we give
a breakdown of the contributions to the hyperfine parameters in zero applied field.

4. Experiment

The single crystal used for the measurements is a parallelepiped of dimensions 1.8 mm
× 1.8 mm × 5.3 mm. The long dimension coincides with the crystal’sa axis. The
specimen was incorporated as the central conductor of a tunable coaxial microwave cavity
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Table 3. The demagnetizing fieldBdm, the Lorentz fieldBL, the field due to the dipoles within
the Lorentz sphereBLS and the total fieldBtot at the terbium site in TbNi5. All of the figures
quoted pertain to the ferromagnetic phase with no applied field. The units are teslas. The
coefficientκ was obtained from a fit to the experimental data.

Bdm BL BLS Btot κdip κ

−0.08 0.36 −0.1 6.34 0.032−0.729

Table 4. The contributions to the hyperfine parameters for the ground state of Tb3+ in TbNi5
in zero applied field. The units are MHz. The superscripts (1) and (2) denote respectively the
first- and second-order intra-ionic contributions.aJ−mix is the correction forJ -mixing.

Dipolar Quadrupolar

a′(1) a′(2) a′′ aJ−mix at P ′(1) P ′(2) P ′′ Pt w

2785.8 −0.12 40.67 −13 2812.4 262.7 2.9 −42.2 223.4 0.58

and immersed in liquid helium at the centre of a superconducting magnet. Details of the
cavity and the spin-echoNMR spectrometer are given by Carboniet al (1989).

The a axis of the crystal was parallel to within one degree to the magnet’s axis. Our
computations show that a few degrees of misalignment between the applied field and thea
axis do not significantly affect the hyperfine splitting. In a field of 8 T, the estimated shift
in the NMR frequencies caused by a three-degree misalignment is less than 0.5 MHz, which
is small compared to the experimental uncertainty (3 MHz).

Strong spin-echo signals were detected at 1.3 K from each of the three159Tb (I = 3
2)

NMR transitions. TheNMR spectra were obtained by stepping the frequency at fixed fields.
The spectrum in 8 T is shown in figure 2. At low fields (less than 3 T), the spectrum is
partly obscured by signals from domain walls and closure domains. The uncertainty in the
measuredNMR frequencies,±3 MHz in high fields, increases progressively to±10 MHz
as the field is reduced below 3 T. We were not able to perform a reliable deconvolution of
the spectrum in zero applied field; therefore we do not include the zero-field data in our
analysis.

5. Results and discussion

5.1. The quadrupolar parameter

Comparison between the value ofPt measured from a singleNMR spectrum and computation
is not straightforward because the sign ofPt cannot be obtained from the spectrum (Abragam
1961) and also becauseP ′′, the extra-ionic contribution, is not known. However, given an
accurate set of crystal-field parameters,P ′′ and the sign ofPt can be obtained from the
field dependence of|Pt | andP ′ (Bunburyet al 1989) provided that the changes in|Pt | with
the applied field are large compared to the experimental uncertainties. SinceP ′′ = Pt − P ′

is independent of the applied field one expects the graph of|Pt | − P ′ against field to be
horizontal if Pt > 0 and, conversely, the graph of−|Pt | − P ′ against field to be horizontal
if Pt < 0. Both graphs for Tb3+ in TbNi5 are shown in figure 3. It is clear thatPt is
positive. The constant value ofPt −P ′ = P ′′ is −42.2±0.7 MHz. The uncertainty that we
quote is based on the experimental errors only. Because the error matrix for the crystal-field
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Figure 2. The 159Tb NMR spectrum of Tb3+ in TbNi5 at 1.3 K with a field of 8 T applied along
the a axis.

parameters is not known, the uncertainty arising from the inaccuracy in these parameters
cannot be quantified.

The constancy ofPt − P ′ provides a useful test for the accuracy of the crystal-field
parameters. By varying independently each of the crystal-field parameters and using the
field dependence ofPt − P ′ as a test, we have estimated upper bounds for the unknown
uncertainties on the crystal-field parameters, 4% forB0

2 andB0
6 and 8% forB0

4 andB6
6.

Substituting the value ofP ′′ into equation (16) we obtain the electric field gradient at the
terbium nucleus,V ′′

cc = (9.77±0.2)×1021 V m−2, in good agreement with the corresponding
figure, V ′′

cc = (10.3 ± 0.6) × 1021 V m−2, derived from the M̈ossbauer measurements of
van Steenwijket al (1977) on155Gd in GdNi5. From 161Dy, 166Er and169Tm Mössbauer
spectroscopy Gubbenset al (1985, 1989) foundV ′′

cc = 6.5×1021 V m−2, 14.8×1021 V m−2

and 17.7 × 1021 V m−2 at the rare-earth nucleus in DyNi5, ErNi5 and TmNi5 respectively.
Small differences inV ′′

cc for different rare earths in the same series are expected because of
the small differences in the lattice parameters and also because of the different shielding.

We may now use equation (19) to estimate the antishielding ratioγN/γE for Tb3+ in
TbNi5. From the value ofB0

2 given in table 1 and the measured value ofP ′′ we find
γN/γE = 174± 6. This figure may be compared to the much smaller valueγN/γE =
104± 20 obtained by Bunburyet al (1992) for the insulating compound Tb(OH)3. The
large discrepancy between the two values for the antishielding factor strongly reinforces the
point made in section 2.3 that the relation betweenB0

2 and the electric field gradient at the
nucleus is not an intrinsic property of the ion but depends strongly on the host material.
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Figure 3. The field dependence of|Pt | − P ′ and−(|Pt | + P ′) where|Pt | is measured andP ′
is computed.

5.2. The dipolar parameter

The measured and computed field dependence ofat are shown in figure 4. The computed
values include corrections forJ -mixing (ranging from−13 MHz in zero field to−15 MHz
at 8 T). The coefficientκ was treated as a free parameter, independent of the applied field.
Its value was derived from the field dependence ofat using a procedure similar to that
used in section 5.1 to findP ′′. The value obtained forκ is −0.729± 0.005 T, which
gives Bce + Borb = 3.80 ± 0.03 T in zero applied field. In the notation of McCausland
and Mackenzie (1979) the contributions from the spin- and orbitally polarized conduction
electrons to the hyperfine field are separated by writing

κ = (Kp + Kn)(gJ − 1) + (2 − gJ )Korb (20)

where the coefficientsKp + Kn andKorb are considered constant for a given isomorphous
rare-earth series. Using the value forBce + Borb = 8.6 T measured by van Steenwijket al
(1977) for GdNi5 and the value that we obtained for TbNi5 we find Kp + Kn = −1.23 T
andKorb = −0.24 T for the RNi5 series. This givesBce = 3.17 T andBorb = 0.63 T for
the contributions from respectively, the spin- and orbitally polarized conduction electrons
to the hyperfine field at the terbium nucleus in TbNi5.

5.3. The pseudo-octupole parameter

The parameterw is a purely second-order effect. Apart from in some special cases (see
Bunbury et al 1995), w is at least four orders of magnitude smaller than the dipolar
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Figure 4. The computed and measured field dependences of the dipolar hyperfine parameter.

parameter. The computed value ofw for TbNi5 in fields between 0 and 8 T varies from
0.4 to 0.5 MHz. For all of the fields in our experiment, we findw of the order of 0.4± 0.5
MHz, in broad agreement with the computation. Because of the large relative uncertainty
of the measurement, no extra information can be obtained from the field dependence ofw.

6. Summary and conclusions

We have made a detailed study of the field dependence of the hyperfine splitting of terbium
in a single crystal of TbNi5. The measured field dependence of the dipolar hyperfine
parametersat is in perfect agreement with our computation which involves only one field-
independent free parameter:κ. As the contribution ofκ to at is less than 1.5% of the total
we conclude that the crystal-field and exchange parameters in table 1 give a very accurate
description of the ground state of terbium in TbNi5. We have measured the electric field
gradient at the terbium nucleus and obtained with unprecedented precision the ratio of
antishielding factorsγN/γE . The value we obtain forγN/γE is significantly different from
that measured in an insulating compound. This difference is attributed to the contribution
V ′′

cc
(val) of the valence electrons toV ′′

cc in the metallic host. If, as suggested by Coehoorn
and Buschow (1991), the lattice contribution toV ′′

cc can be estimated using the value of
γN/γE measured in the insulator then the value ofV ′′

cc
(val) derived from our measurements

is V ′′
cc

(val) = 15.7× 1021 V m−2 in agreement with the value of 16× 1021 V m−2 computed
by Coehoorn and Buschow (1991) for gadolinium in GdNi5.
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Appendix A

The Tb3+ ion for intermediate coupling:
J = 6
ground manifold:

0.97867F6 + 0.06175G6 + 0.13295G′
6 − 0.14015G′′ + 0.01135H6 + 0.01575H ′

6 (a)
Land́e g-factor: gJ = 1.493 (a)
operator-equivalent coefficients (b):

〈J‖α2‖J 〉 = −1.0253× 10−2

〈J‖α4‖J 〉 = 1.1988× 10−4

〈J‖α6‖J 〉 = −1.0560× 10−6.

The mean square radius of the 4f shell:
〈r2〉 = 2.302× 10−21 m2 (c).

The 159Tb nucleus:
I = 3

2
hyperfine coupling constants:

dipolar: a0 = 3168± 18 MHz (d)
quadrupolar:P0 = 360± 8 MHz (d)

gyromagnetic ratio:γ /2π = 10.13 MHz T−1 (e)
quadrupole moment:Qn = 1.432 b (f).

TbNi 5:
lattice parameters (g):

a = 0.4895 nm
c = 0.3959 nm

ordering temperature (h):
Tc = 23± 1 K

spontaneous magnetization (h):
a axis
7.60µB per formula unit
µNi = −0.1 µB /Ni

molecular-field coefficients (h):
nRNi = −0.65 (µB T−1)−1

nRR = 0.41 (µB T−1)−1

nickel susceptibility (h):
χNi = 90.0 × 10−4 µB T−1.

Key to references: (a) Ofelt (1963), (b) Scott (1970), (c) Freeman and Desclaux (1979),
(d) Pelletier-Allard and Pelletier (1985), (e) Bleaney (1988), (f) Tanakaet al (1983), (g)
Haszko (1960), (h) Nait-Saada (1980).
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